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Shortest path and distributions

Stefan Schwarzer,1,2 Shlomo Havlin,2 and Armin Bunde3
1Institut für Computeranwendungen 1, Universita¨t Stuttgart, 70569 Stuttgart, Germany

2Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat Gan, Israel
3Institut für Theoretische Physik III, Universita¨t Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany

~Received 23 October 1997; revised manuscript received 20 November 1998!

We study several structural properties including the shortest pathl between two sites separated by a Euclid-
ean distancer of invasion percolation with trapping~TIP! and without trapping~NIP!. For the trapping case we
find that the massM scales withl asM; l dl with dl51.51060.005 andl scales withr as l;r dmin with dmin

51.21360.005, whereas in the nontrapping casedl51.67160.006 anddmin51.13360.005. These values
further support previous results that NIP and TIP are in distinct universality classes. We also study numerically
using scaling approaches the distributionN( l ,r ) of the lengths of the shortest paths connecting two sites at
distancer in NIP and TIP. We find that it obeys a scaling formN( l ,r );r df212d minf ( l /r dmin). The scaling
function has a power-law tail for largex values,f (x);x2h, with a universal value ofh'2 for both models
within our numerical accuracy.@S1063-651X~99!12603-5#

PACS number~s!: 61.43.Hv, 05.60.2k, 82.20.Wt
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I. INTRODUCTION

Invasion percolation has been introduced by Wilkins
and Willemsen@1# as a model to describe the evolution
the front between two immiscible liquids in a random m
dium when one liquid is displaced by injection of the oth
This process occurs, for example, when water is injected
oil reservoirs in order to produce oil. Two model varian
have been proposed. The first, nontrapping invasion perc
tion ~NIP!, applies for compressible liquids in which the in
vading liquid always enters the largest available pore on
replaced side of the advancing front. The other, invasion p
colation with trapping~TIP!, finds application for incom-
pressible liquids where the invasion of a pore is forbidden
the incompressibility constraint when the replaced liquid
completely surrounded by the intruder—this variant is cal
invasion percolation with trapping. Apart from the possib
applications, interest in the NIP and TIP models arises
cause both are parameter-free models and self-organize
critical states@2,3#.

In two dimensions~2D! as well as in three dimension
~3D!, numerical studies of NIP and convincing heuristic a
guments indicate that NIP falls into the same universa
class as regular percolation@1#. This finding is believed to
hold for all dimensions.

The situation for TIP is more complicated. Numeric
studies have found that the fractal dimensiondf in 2D of the
NIP (df'1.90) and TIP (df'1.82) @4–6# models differs
only by about 4%. This difference is small and heuris
arguments suggest that in three and higher dimensions
trapping becomes irrelevant so that NIP and TIP are in
same universality class. Only recently it has been argued@7#,
using a mapping from optimal paths to shortest paths, tha
least in three dimensions TIP is in a different universa
class from that of regular percolation. Earlier numerical
sults for the fractal dimension of the clusters had sugge
that NIP and TIP in 3D fall into the same universality cla
as regular percolation@1#.
PRE 591063-651X/99/59~3!/3262~8!/$15.00
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Therefore, the possibility that finite-size or crossover
fects are responsible for the difference~in 2D! or the agree-
ment~in 3D! of the cluster fractal dimensions cannota priori
be excluded. Furthermore, there exist only heuristic but
rigorous arguments that NIP falls into the universality cla
of regular percolation, i.e., thatdf exactly equals 91/48. To
test these questions, we believe that it is important to sea
for properties in which the two models differ more signi
cantly than in the fractal dimension, and at the same time
collect more evidence that two-dimensional~2D! NIP falls
into the regular percolation class.

In this paper we study, apart from the fractal dimensi
~Sec. II B!, several other structural properties of NIP a
TIP. Among those are the lengthl of the shortest path~also
called chemical distance! connecting two sites of a cluster a
Euclidean distancer ~Sec. III B! and the cluster massM ( l )
contained within a chemical distancel from a given site~Sec.
III !. The chemical distance is useful to understand trans
properties in disordered media@8#.

As an applied example let us mention the problem of
recovery, where water or steam is injected into one boreh
in order to recover oil from another. Here, the chemical d
tance between the two boreholes is directly related to
time of breakthrough of the injected medium at the seco
hole @9#.

We also study the distributionN( l ,r ) of the number of
cluster sites with chemical distancel and Euclidean distance
r from the cluster center. This distribution has been stud
in a variety of contexts~see, e.g.,@8#!. For example, for
self-avoiding walk~SAW! chains, it provides insight into
dynamical properties such as the propagation of excitati
along the chain which can perform ‘‘jumps’’ at the position
where chain elements come close. De Gennes conject
the form of this distribution for SAW@10#. Since his argu-
ments possibly apply in a broader context@11#, we test nu-
merically their validity in the NIP and TIP cases~Sec. IV!.
We find there a scaling form of N( l ,r )
;r df212dminf ( l /r dmin), with
3262 ©1999 The American Physical Society
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PRE 59 3263STRUCTURAL PROPERTIES OF INVASION . . .
the property thatf (x);x2h with h.2 for largex, indepen-
dentof the model~NIP or TIP!.

From the scaling form ofN( l ,r ) we then compute the
average value of̂l (r )& for fixed values ofr, e.g., close to the
origin r 50. The value ofh52 causes the divergence wit
system size of all moments ofl greater than or equal to 1
~Sec. IV C!. We conclude and summarize our results in S
V.

II. STRUCTURAL PROPERTIES

A. The models

To generate invasion percolation clusters~NIP! in 2D, we
perform the following steps.~i! We first assign random num
bers on a 2D square array of sizeL3L. Then~ii ! we initiate
the growth by occupying the center site of the lattice~start
the injection of water into the oil reservoir!. In step~iii ! we
search along the perimeter of the cluster for the site with
largest random number~corresponding to the largest pore!.
This perimeter site is then~iv! added to the aggregate~re-
placing the oil in the pore by water!. The last two steps~iii !
and ~iv! are then repeated to grow larger and larger clus
@12#.

In TIP one checks at each step of the growth proc
whether the occupied site has closed a loop~trapped replaced
liquid!. The rules are such that liquid cannot escape thro
necks created by next-nearest-neighbor occupied sites o
lattice. The liquid can escape only through a free path at le
one lattice unit wide. If a loop has been closed, then
forbid the invasion on all enclosed internal perimeter sites
the aggregate, i.e., we restrict the search of the next lar
random number to only the external perimeter sites of
cluster@13#.

B. Fractal dimensions

We grow the clusters in steps, stopping at logarithmica
spaced cluster masses of up toM5500 000. In Fig. 1 we
show two typical clusters of the two invasion percolati
models of massM550 000. It is apparent from the figur
that TIP has larger trapped regions on all scales, there
suggesting a smaller fractal dimensiondf than NIP.

To obtain the fractal dimension quantitatively, we me
sure the radius of gyrationr g of the clusters versus the
massM and display the results in Fig. 2~a! for NIP and TIP.
For both models we average data from two enembles,
with 25 000 and 50 000 clusters of masses<40 000, the
other with'5000 clusters of mass<500 000. For algorith-
mic reasons the cluster growth has been terminated at
L53300. Although we have chosen the largest feasible
ues ofL, we could not avoid a slight finite-size effect in th
data point corresponding to the largest mass: a fraction
about 0.01 of all the generated clusters have had a span
large to fit on the simulation array. The average span is
proximately 2450. Since the missing configurations are v
elongated,r g is rendered slightly too small atM5500 000.
However, we find that this bias is well within the statistic
error of our data.

In Fig. 2~a! we do not plotr g directly, but the rescaled
valuer g /M1/df , which asymptotically approaches a consta
value. A horizontal line is plotted for comparison. The plot
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quite sensitive to the correct value ofdf , which we have
obtained by consideration of the local fractal dimensio
df(M )[D lnM/Dlnrg . These values converge to the fract
dimensiondf of the clusters in the limitM→`. Finite-size
scaling suggests thatudf2df(M )u;M 2a, wherea is an a
priori unknown model-dependent correction-to-scaling e
ponent@14,15#. Demanding thatdf2df(M ) vs M 2a should
be linear for largeM, we estimate values ofa50.8060.15
for NIP and 0.6060.15 for TIP and obtain the correspondin
plots in Fig. 2~b!. A straight line fit to the data in the dis
played range intersects the abscissa atdf .

We obtain intersections atdf51.89960.003 for NIP and
df51.83160.003 for TIP. The measured fractal dimensi
of NIP is in very good agreement with the exact val
91/48'1.896 of regular 2D percolation@16#. The dimension
of TIP is larger than the value 1.82 often found in the liter
ture @5,6#, but is also more precise. The fractal dimensions
NIP and TIP differ by about 20 standard deviations and th
we confirm that in 2D the two models belong to differe
universality classes.

III. CHEMICAL DISTANCE

A. Total mass

Next we study the chemical distance in the genera
clusters. To this end, we consider the cluster connectivity

FIG. 1. Snapshots of a NIP~a! and a TIP~b! cluster of mass
M550 000.
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3264 PRE 59STEFAN SCHWARZER, SHLOMO HAVLIN, AND ARMIN BUNDE
different growth steps, characterized by the same logarith
cally increasing cluster masses as in the preceding sec
For each stage, we determine the chemical distancel of all
cluster sites to the site closest to the center of mass. We
the value^ l & by averaging over all the sites in one clust
over different realizations of the cluster.

The asymptotic scaling behavior ofM;^ l &dl defines the
chemical dimensiondl of the cluster. In the same fashion a
for the determination of the fractal dimension in the prec
ing section, we plot̂ l &/M1/dl vs M for NIP and TIP in Fig.
3~a!. As in the case ofr g , here also slight finite-size effect
are present at the largestM value, because some very elo
gated ‘‘linear’’ clusters with span larger thanL53300 are
not sampled. As in the preceding section, we see no sig
cant effect on our analysis.

Since the chemical dimensiondl corresponds to the
asymptotic slope of the log-log plot of^ l & vs M, we find the
local slopesD lnM/Dln^l& and plot them in Fig. 3~b! as a
function of M 2b. The values ofb50.4560.15 for NIP and

FIG. 2. ~a! Plot of the radius of gyrationr g divided by M1/df

with df51.899~NIP! anddf51.831~TIP! vs the number of sitesM
in the cluster. For NIP we have averaged over 25 000 system
massM<40 000 (1) and 5050 systems ofM<500 000 (*) and
for TIP over 50 000 systems ofM<40 000 (j) and 5750 systems
of massM5500 000 (s). For largeM, the graphs become hori
zontal, indicating that the fractal dimensions equal the chosen
caling exponents. A finite-size analysis of the same data is
played in part~b! of the figure. The values ofD lnM/Dlnrg are
plotted as functions of 1/Ma, wherea50.8 for NIP anda50.6 for
TIP. The straight lines are fits to the data in the range@0, . . . ,0.05#.
The intersect with the abscissa is the fractal dimension which f
these plots equalsdf51.89960.003 for NIP and df51.831
60.003 for TIP.
i-
n.

nd

-

fi-

0.7060.15 for TIP differ from the correction exponentsa of
the asymptotic behavior ofr g .

Performing a straight line fit, we find the chemical dime
sion from the extrapolationM→` to be dl51.67160.006
for NIP and dl51.51060.005 for TIP. The error bars ac
count for the statistical errors and allow for systematic err
in b ~estimated by performing fits for different data ranges
M and values ofb). Thus, the chemical dimension of TI
turns out to be significantly lower than that of NIP. As in th
case of the fractal dimension of TIP, this is caused by
presence of trapped regions in which no further growth
curs ~see the next section!.

B. Shortest path

The scaling of the length of the shortest path with t
Euclidean distance between two sites isl;r dmin, which de-
fines the shortest path exponentdmin and is reflected in the
scaling of the averagêl & as a function ofr g . We have
therefore plotted̂l & vs r g for different values of the massM.
Figure 4 displays our data for the NIP and the TIP mode
Just as in the previous cases we rescale our data by divi
by known ~or tentative values! of dmin . For NIP we use

of

s-
s-

m

FIG. 3. ~a! Plot of the average chemical distancel divided by
M1/dl with dl51.671 ~NIP! and dl51.510 ~TIP! vs the cluster
mass. The symbols and the statistical ensembles correspond to
in Fig. 2. For largeM, the curves approach a constant value, in
cating that the dimensiondl is very close to the chosen rescalin
exponents. A finite-size analysis of our data is displayed in part~b!
of the figure. The values ofD lnM/Dlnl are plotted as functions o
1/Mb, whereb50.45 for NIP andb50.7 for TIP. The straight lines
are fits to the data in the range@0, . . .,0.02#. The intersect with the
abscissa is the fractal dimension which from these plots equaldl

51.67160.006 for NIP anddl51.51060.005 for TIP.
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PRE 59 3265STRUCTURAL PROPERTIES OF INVASION . . .
dmin51.133, which is about 1.5 standard deviations larg
but probably still consistent with the best known value
regular percolation ofdmin51.13060.002 reported in@17#.

For TIP we use a value of 1.213. We find that the p
reacts rather sensitively to the exact value ofdmin and we
estimate the error to be about 0.005. The horizontal s
lines have been added as guides to the eye.

We have verified these values ofdmin also by measure
ments ofl vs r in ensembles of configurations grown up to
fixed span L, without restrictions on the cluster mass.
these ‘‘static’’ measurements we have recorded the ave
value ofl and the average minimum value ofl for the cluster
sites at distancer from the center of mass. These measu
ments are consistent with the above values, but they are
fected by large systematic finite-size effects. In particu
the averagê l (r )& at distancer displays approximate loga
rithmic dependence onL, which we will address in detai
later ~Sec. IV C!.

In fact, one can imagine growing a NIP and a TIP clus
on a substrate with the same disorder. The clusters wil
exactly equal up to the moment when the first trapp
growth sites appear. This is the reason that the acces
perimeter@18# exponents of NIP and TIP are the same@6,19#
and thus both very likely equal to43 @19#. Then, NIP will
continue to grow in the ‘‘trapped’’ region while TIP canno
grow there any further. Thus, in NIP additional connectio
will be present which tend to lower the average chemi
distance at fixed Euclidean distance. Consequently,
chemical distances in NIP must be shorter than in TIP,
sulting in NIP’s lowerdmin .

It is clear that only two of the three quantitiesdf ,dl , and
dmin are independent, because, for instance, by combinin
M;r g

df and M; l dl one obtains thatl;r g
df /dl and thusdmin

5df /dl . This equality is satisfied for our results within th
limits given by the error bars, although the result for N
points to a slightly larger value ofdl'1.673 compared to the
value 1.671 reported in the preceding section.

IV. DISTRIBUTIONS

A. Joint distribution of l and r

A possible step beyond the above scaling analysis is
consider the joint distributionNL( l ,r ), whereNL( l ,r )dldr is

FIG. 4. Plot of l /r g
dmin , wheredmin5df /dl vs r g both for NIP

(s) and TIP (*), using interpolated data from the measuremen
l and r g vs M. The fractal and topological dimensions are equal
the values in the preceding figures and yielddmin51.13360.005 for
NIP and 1.21360.005 for TIP.
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the number of sites withl in the intervall ••• l 1dl and si-
multaneouslyr in r •••r 1dr for clusters of spanL. It is our
goal to establish scaling properties and, if possible, a fu
tional form of this distribution, as has been outlined a
motivated in the Introduction.

To this end we make the commonly used assumption
NL may be written in the scaling form

N~ l ,r !;r a f ~ l /r b!, ~1!

where we have suppressed the dependence onL to indicate
that we are interested only in the asymptotic behaviorL
→`. Sincel;r dmin, we expect thatb5dmin . An integration
over l yields the radial densityN(r ) of sites at distancer,

N~r !;r aE
0

`

dl f ~ l /r dmin! ~2!

5r aE
0

`

dxrdminf ~x! ~3!

;r a1dmin. ~4!

Since the numberN(r ) of sites in a~fractal or Euclidean!
radial shell of radiusr is asymptotically proportional to
r df21, we find by comparison thata satifies the relationa
5df212dmin . Knowing a and b, we are in a position to
extract the scaling functionf (x) from our simulations by
plotting N( l ,r )/r df212dmin as a function ofl /r dmin. Figures 5
and 6 show the resulting data collapse both for the NIP
the TIP model. In these plots, we considerr as a paramete
and l as a variable, so that different curves correspond
different values ofr.

The data that have not collapsed onto the master cu
correspond to large values ofr, where the finiteness of the
system limits the range ofl values severely when compare
to r dmin. Consequently, our assumption~1! breaks down be-
cause it has only asymptotical validity.

We like to note here that a second, equivalent scal
form for N( l ,r ) can be written in analogy to Eq.~1!, but with
interchanged roles ofl and r,

N~ l ,r !; l ã f̃ ~r / l b̃!. ~5!

As above, sincel;r dmin, we haveb̃51/dmin . Similarly, by
integration ofN( l ,r ) with respect tor, we find the number of
sites in the chemical shelll, N( l ); l dl21. We omit the details
of the computation here, but simply state the result,ã5dl
2121/dmin . Moreover, the two scaling functions are relat
by

f ~x!5x2dl1111/dminf̃ ~x21/dmin!. ~6!

The above formulas can be used to easily switch between
two representations or to calculate scaling exponents, w
f (x) and f̃ (x21/dmin) display singular behavior.

B. Functional form of the scaling function

In Figs. 5~a! and 5~b! we also observe that the scalin
function f (x) has a long power-law tailf (x);x2h. By com-

f
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3266 PRE 59STEFAN SCHWARZER, SHLOMO HAVLIN, AND ARMIN BUNDE
parison to the solid line with a slope of22 we see that the
characteristic exponent is very close toh52.060.02 both
for NIP and TIP. The value of the exponenth52 is thus
independent of the specific percolation model.

Insight into the reasons whyh52 has been gained in
previous work@11,20# has focused on the conditional pro
ability F(r u l ) @8,21# to find a value ofr within a fixed
chemical shelll. The normalization ofF(r u l ) is such that it
can be interpreted as a regular density in space of sites
characteristic chemical shell numberl, i.e.,

E
0

`

drr d21P~r u l !5const. ~7!

The constant depends on the spatial dimension but notl
and is, e.g., equal to 1/2p in 2D. The functional form of
P(r u l ) is accepted to be of the scaling form@8#

P~r u l !;
1

l d/dmin
gS r

l 1/dmin
D , ~8!

where

g~x!;H xg1, x!1,

xg2exp@2axd#, d5
dmin

d min21
, x@1.

~9!

FIG. 5. Data collapse for~a! NIP and~b! TIP of the scaled joint
distribution functionN( l ,r )/r df212dmin vs l /r dmin. The data are av-
eraged over 25 000~NIP! and 50 000 ~TIP! systems of M
540 000. The curve parameter is~right to left! r
515,25,35,45,65,85,105,145,185,245 ~NIP! and r
57.5,12.5,17.5,22.5,32.5,42.5,57.5,82.5,117.5,167.5,232.5~TIP!.
ith

To find the exponentg1 , Ref. @11# has applied an argumen
originally used by de Gennes for self-avoiding walks@10# to
Leath percolation with the resultg15df1dmin2d. How-
ever, Leath percolation grows one chemical shell after
other and is thus topologically different from NIP such tha
is nota priori clear thatg1 is the same as in NIP. Since TIP’
df appears to differ from NIP’s, at least in 2D, the validity
this equation for TIP would be surprising.

Let us try to find the value ofg1 from the scaling relations
for the distributions. If we integrateN( l ,r ) over r, we find
the number of sites in shelll,

N~ l !5E
0

`

drN~ l ,r !; l dl21. ~10!

Since Eqs.~7! and ~10! are valid for all l, we obtain that
N(r ,l ) andP(r u l ) are related by

N~ l ,r !; l dl21r d21P~r u l !. ~11!

We now use the expression~8! for P(r u l ) to write

N~ l ,r !; l dl21r d21l 2d/dmingS r

l 1/dmin
D . ~12!

If we rearrange factors ofl and r, we can compare this ex
pression with the scaling form~1! for N( l ,r ),

FIG. 6. Data collapse for~a! NIP and~b! TIP of the scaled joint
distribution functionN( l ,r )/ l dl2121/dmin vs r / l 1/dmin. The data are
averaged over~NIP! 5050 and ~TIP! 5750 systems ofM
5500 000. The curve parameter is~top to bottom! l
575,125,175,275,425,625,875,1325,1975,2975,4425~NIP! and l
575,125,175,275,425,625,875,1325,1975,2975,4425,6675~TIP!.
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PRE 59 3267STRUCTURAL PROPERTIES OF INVASION . . .
N~ l ,r !;r d21l 21/dmin~d2df1dmin!gS r

l 1/dmin
D ~13!

5r df212dminS r

l 1/dmin
D d2df1dmin

gS r

l 1/dmin
D ~14!

5r df212dminS l

r dmin
D ~21/dmin!~d2df1dmin!

gS S l

r dmin
D 21/dminD ,

~15!

and find howf (x) must be expressed in terms ofg(x):

f ~x!5x2d/dmin211dlg~x21/dmin!. ~16!

Now we expand this relation for largex such that we can us
the asymptotic forms for bothg(x(21/dmin)) and f (x). One
obtains

x2h5x2d/dmin211dlx2g1 /dmin. ~17!

Here we read off that the different exponents are not in
pendent, but thath andg1 satisfy the equation

h5~g11d!/dmin112dl , ~18!

or, conversely, expressingg1 in terms ofh,

g15~h21!dmin1df2d, ~19!

where we have applied the identitydmin5df /dl . Thus, our
numerical finding thath52 implies g15df1dmin2d, for
both NIP and TIP, supporting the arguments in Ref.@11# for
Leath percolation. Although it is not very surprising that t
formula holds both for NIP and Leath percolation—sin
both are conjectured to be in the same universality class—
possibility that it also holds for TIP suggests a more gene
validity.

C. Behavior of moments

Specific moments of the distributions discussed ab
have important physical meaning in applications. For

FIG. 7. Generalized averageŝl q(r ,10)&1/q of 9100 NIP
(1,3,*) and TIP systems (h,j,s) plotted vs their linear spanL.
Different pairs of curves correspond to differentq50.75,1,1.5
showing convergence~bottom!, nearly logarithmic~center!, and
power-law divergence~top!.
-

he
al

e
-

stance, if we fixr 50 and consider the average^ l (r 50)&,
we obtain the mean chemical length of the paths returnin
the origin, which gives some insight into transport propert
of systems that can be described by NIP or TIP mod
Higher moments ofN( l ,r ) tell us about the fluctuations tha
have to be expected in transport phenomena—say, the d
bution of times that it takes water injected at one oil boreh
to reach a second borehole at distancer.

The valueh52 indicates that the distribution ofl for
fixed r has a Lorentzian tail. The well-known fact that such
distribution does not have a well defined average imp
interesting properties for the averages^ l (r )& or, more gener-
ally, for ^ l (r )q&1/q, where we take the momentq as a positive
real parameter.

Let us consider ensembles of clusters grown up to fix
spanL. Typically, in such clusters, the longest chemical pa
has lengthLdmin. When we now use the scaling form fo
N(r ,l ) to compute^ l (r )q&, we will extend the integrals to

FIG. 8. Scaling plots of ln„^ l (r ,10)q&1/q
…2(1/q)ln(A/q2h11)

vs (q2h11/q)lnL for 9100 NIP~a! and TIP~b! clusters of linear
span up toL52048. Different symbols correspond to differentq
51.5(1),2.0(3),2.5(*),3.5(h),3.5(j). From Eq. ~23! we ex-
pect forq.h21 asymptotically straight lines with slopedmin . For
comparison, the solid lines indicate these values for the respec
case. For TIP, the asymptotic slope appears to be slightly sm
than the value expected fromdmin , which could be due to finite-size
effects. The values ofA andh are chosen such that the best possi
collapse results:A58.0,h52.0 for NIP,A58.0,h52.05 for TIP.
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TABLE I. Summary of the various exponent values in NIP, regular 2D percolation, and TIP.

df dl dmin h a b

2D NIP 1.89960.003 1.67160.006 1.13360.005 2.0060.10 0.8060.15 0.4560.15
2D percolation 91/48 1.67860.003 1.13060.002@17# 2.0 @11#

2D TIP 1.83160.003 1.51060.005 1.21360.005 2.0560.10 0.6060.15 0.7060.15
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Ldmin, which introduces effectively a cutoff function mult
plying N(r ,l ),

^ l ~r !q&5E
1

Ldmin

dll qN~r ,l !. ~20!

If L is sufficiently large, then the integral will be dominate
by the tail contributions andf ( l ),l @1 will be close to its
asymptotic form;Al2h, with A being the constant of pro
portionality. We will concentrate on the case thatr is a small
positive constant, say 1. Then, for sufficiently largeL the
relation

^ l q~1!&'AE
1

Ldmin

dll ql 2h ~21!

holds. Forq5h21, the integral diverges logarithmically, fo
q.h21 in a power-law fashion, but forq,h21 the inte-
gral converges to a constant independent ofL. In summary,
we obtain for^ l (1)q&1/q

^ l q~1!&1/q'H const, q,h21,

@Adminln~L !#1/q, q5h21,

AS A

q2h11D 1/q

Ldmin~q2h11/q!, q.h21.

~22!

Sinceh52, we expect that the regular average^ l (1)& for
q5h2151 diverges logarithmically. Averages derive
from smaller moments become independent ofL and those
for larger moments diverge as powers ofL. These predictions
are supported by the simulation as shown in Fig. 7, where
display ^ l q(1)&1/q as a function of cluster size forq
50.75,1,1.5 both for NIP and TIP. The abscissa scale
logarithmic, so that the two central curves forq51 should
be linear for largeL. We see clearly the convergence for t
moments belowq51 and the divergence for larger mo
ments.

If we plot the logarithm of the diverging generalized a
erages ln„^ l (1)q&1/q

…, we expect asymptotically

ln„^ l ~1!q&1/q
…'

1

q
lnS A

q2h11D1dmin

q2h11

q
lnL.

~23!
e

is

Thus, plotting ln„^ l (1)q&1/q
…2(1/q)ln(A/q2h11) vs (q2h

11/q)lnL as an independent variable on the abscissa,
graph becomes a straight line with slopedmin . Such a plot
constitutes an independent way to determineh anddmin . We
find the value ofh by demanding that the graph should b
straight for largeL and determinedmin from its slope.

Our data for NIP@Fig. 8~a!# support nicelyh.2 and
dmin51.133 as shown in Fig. 8~a!.

The TIP data@Fig. 8~b!#, however, are slightly less con
vincing. We obtain the best straight line forh52.05, buth
has only a precision of 0.1. Likewise, the correspond
asymptotic slope is about 1.18, smaller than the expec
value ofdmin51.213, which is indicated by the straight lin
added in the figure.

V. DISCUSSION AND SUMMARY

In this paper we have studied, along with the fractal
mensiondf , several structural exponents of NIP and TI
which are summarized in Table I. We find strong eviden
that NIP and TIP in 2D fall into different universality
classes: we find thatdf for the two models differs by more
then about 20 standard deviations. In addition, the shor
path exponent in TIP is larger than for NIP by about
standard deviations, reflecting the additional constraints
posed on the topology by the trapped regions in the T
interior. Consequently, the chemical dimension of NIP
larger than that of TIP. However, all measured structu
exponents of NIP are within the error bars equal to those
regular percolation, thus providing convincing numeric
evidence for the conjecture that NIP and regular percola
fall into the same universality class.

We have also studied the distributionN( l ,r ) of the num-
ber of cluster sites with chemical distancel and Euclidean
distancer from the cluster center. We find a scaling form
N(r ,l );r df212dminf ( l /r dmin), with the interesting property
that f (x);x22 for largex, independentof the model~NIP or
TIP!. The very large exponent of (22) gives rise to a loga-
rithmic behavior with system size, if average values ofl are
calculated as functions ofr, more generally allqth-order
momentŝ l q& of N( l ,r ) will diverge with system size forq
>1 and converge forq,1.
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